Analysis of lateral bearing capacity of wing-monopile with symmetrical wing plates
-
摘要: 影响加翼桩水平承载性能的因素众多,其中翼板数量、荷载方向与翼板夹角是主要影响因素。采用ABAQUS有限元计算软件研究了软黏土地基中桩径为5.0 m,对称布置二、三和四翼板的加翼桩在不同荷载作用方向时桩身泥面水平位移、桩身倾斜率、桩身内力、桩身应力和极限承载力等的变化。通过与相同条件单桩的承载特性对比,分析了加翼桩水平承载性能提升幅度,明确了翼板通过同时或交替承担底面端承力、侧面摩擦阻力、水平土抗力和增加桩身抗弯刚度以提高其水平承载性能的机理,拟合了对称布置二、三和四翼板加翼桩水平极限承载力随荷载作用方向变化的计算式,对加翼桩极限承载力控制条件进行了对比分析。Abstract: There are many factors that affect the lateral bearing capacity of wing-monopile, among which the number of wing plates, the angle between load direction and wing plates are the main influencing factors. The ABAQUS finite element calculation software was used to calculate the horizontal displacement of the pile at mud surface, tilt rate, internal force, stress and ultimate bearing capacity of 5 m diameter wing-monopile in the soft clay foundation with two, three and four symmetrical wing plates under different load directions. By comparing with the bearing characteristics of monopile under the same conditions, the extent of improvement of the lateral bearing capacity of the wing-monopile was analyzed, the mechanism for the wing plates to improve the lateral load-bearing performance by simultaneously or alternately bearing the end force, side frictional resistance, lateral earth pressure, and increasing the bending stiffness of the pile was clarified, the calculation formula of the lateral ultimate bearing capacity of wing-monopile with two, three and four symmetrical wing plates under load was proposed, and the control conditions of the ultimate bearing capacity of the wing-monopile were compared and analyzed.
-
表 1 加翼桩和地基土体主要参数
Table 1 Summary table of main parameters of wing-monopile and foundation soil
材料 密度/(kg·m−3) 弹性模量/GPa 压缩模量/MPa 泊松比 黏聚力/kPa 内摩擦角/° 剪胀角/° 加翼桩 7 850 206 / 0.3 / / / 土体 1 960 / 7.5 0.4 25 14 7 表 2 加翼桩极限承载力
Table 2 Ultimate bearing capacity of wing-monopile
单桩 二翼板 三翼板 四翼板 极限承载力/MN 荷载方向/° 极限承载力/MN 荷载方向/° 极限承载力/MN 荷载方向/° 极限承载力/MN 10.36 0 11.67 0 11.06 0 12.10 22.50 10.85 15.00 10.87 11.25 11.49 45.00 10.62 30.00 10.96 22.50 11.19 67.50 10.67 45.00 11.34 33.75 10.96 90.00 10.70 60.00 11.85 45.00 10.87 -
[1] 陈灿明, 苏晓栋, 何建新, 等. 海上风电大直径加翼桩水平承载性能研究[J]. 海洋工程,2018,36(4):97-104,146. (CHEN Canming, SU Xiaodong, HE Jianxin, et al. Study on horizontal bearing capacity of large diameter wing-monopile of offshore wind turbine[J]. The Ocean Engineering, 2018, 36(4): 97-104,146. (in Chinese) [2] ACHMUS M,KUO Y S,ABDEL-RAHMAN K. Behavior of monopile foundations under cyclic lateral load[J]. Computers and Geotechnics, 2009, 36(5): 725-735.
[3] 陈灿明, 何建新, 苏晓栋, 等. 加翼桩水平承载力计算方法研究[J]. 水利水运工程学报,2018(4):1-8. (CHEN Canming, HE Jianxin, SU Xiaodong, et al. Analysis of calculating method for horizontal bearing capacity of wing-monopile[J]. Hydro-Science and Engineering, 2018(4): 1-8. (in Chinese) [4] 李炜, 黄旭, 赵生校, 等. 海上风机基础大直径加翼单桩常重力模型试验数值仿真[J]. 水利水运工程学报,2013(4):6-11. (LI Wei, HUANG Xu, ZHAO Shengxiao, et al. Numerical simulation for 1g-model test of large diameter wing-monopile for offshore wind turbine[J]. Hydro-Science and Engineering, 2013(4): 6-11. (in Chinese) doi: 10.3969/j.issn.1009-640X.2013.04.002 [5] 陈灿明, 王曦鹏, 苏晓栋, 等. 翼板长宽比和夹角对加翼桩水平承载性能影响分析[J]. 水道港口,2018,39(5):596-602. (CHEN Canming, WANG Xipeng, SU Xiaodong, et al. Analysis of the impact of length-to-width ratios and angles of the wing plate on the lateral bearing capacity of wing-monopile[J]. Journal of Waterway and Harbor, 2018, 39(5): 596-602. (in Chinese) doi: 10.3969/j.issn.1005-8443.2018.05.012 [6] 陈灿明, 何建新, 王曦鹏, 等. 翼板刚度与埋深对加翼桩水平承载性能影响分析[J]. 水利与建筑工程学报,2018,16(1):7-12. (CHEN Canming, HE Jianxin, WANG Xipeng, et al. Impacts analysis of wing plate stiffness and buried depth on horizontal bearing capacity of wing-monopile[J]. Journal of Water Resources and Architectural Engineering, 2018, 16(1): 7-12. (in Chinese) doi: 10.3969/j.issn.1672-1144.2018.01.002 [7] 蒋建平, 陈文杰, 杨栓. 局部冲刷对部分埋入单桩水平承载性状的影响[J]. 水利水运工程学报,2017(3):64-70. (JIANG Jianping, CHEN Wenjie, YANG Shuan. Impacts of local scour on lateral bearing behavior of partially embedded single piles[J]. Hydro-Science and Engineering, 2017(3): 64-70. (in Chinese) [8] Det Norske Veritas AS. Design of offshore wind turbine structures: DNV-OS-J101[S]. Oslo: Det Norske Veritas AS, 2013.
[9] 蒋建平, 杨栓. 基于改进p-y曲线法的单桩水平受荷计算[J]. 水利水运工程学报,2017(5):80-87. (JIANG Jianping, YANG Shuan. A calculation of horizontal loaded single pile based on improved p-y curve method[J]. Hydro-Science and Engineering, 2017(5): 80-87. (in Chinese) [10] MURPHY G, DOTERTY P, CADOGAN D, et al. Field experiments on instrumented winged monopiles[J]. Geotechnical Engineering, 2016, 169(GE3): 227-239.
[11] 芦直跃, 马宏旺, 李玉韬, 等. 台风对海上风电单桩基础累积变形影响试验研究[J]. 海洋技术学报,2019,38(6):75-82. (LU Zhiyue, MA Hongwang, LI Yutao, et al. Experimental research on the effect of typhoon on cumulative deformation of offshore wind power single pile foundation[J]. Journal of Ocean Technology, 2019, 38(6): 75-82. (in Chinese)