Verification and integration of TIGGE multimode precipitation forecast products
-
摘要: 数值预报产品的检验与集成是使用和发展数值预报的重要环节。以TIGGE数据中心的NCEP、ECMWF、JMA和KMA等4种模式控制预报产品为基础资料,选取福建池潭水库流域为研究对象,从降水分级预报、降水量级和过程预报等方面对数值预报产品进行了综合评估,同时采用回归集成、TS集成和Nash系数集成等3种方法对多模式产品开展了降水集成预报,在此基础上,探讨了不同集成方法对最终降水预报效果的影响。结果表明,4种产品对无雨和小雨的预报效果均较好,在不同量级降水预报中,JMA模式更适合于25 mm以下量级的降水预报,而ECMWF对25 mm以上量级的降水预报效果较好。对于日降水量预报,NCEP模式的预报效果较差,而ECMWF模式的预报相对更准确。对于降水过程预报,KMA的预测性能则明显差于其他3个模型。集成预报对降低预报误差并提高降水过程预报有较好的效果,其中针对不同量级分类加权的TS集成方法预报效果最优,且提升了高量级降水预测效果。Abstract: Verification and integration of numerical weather prediction (NWP) products is an important step in the application and development of numerical prediction. Based on the NCEP, ECMWF, JMA and KMA NWP models from TIGGE center, the basin of Chitan Reservoir in Fujian province was selected as the research object, the multimodal precipitation forecast products were evaluated from the aspects of precipitation classification forecast, precipitation level and process forecast comprehensively. Meanwhile, three methods of regression integration, TS integration and Nash coefficient integration were used to integrate multimodal precipitation forecast products, and the influence of different integration methods on the final precipitation forecast effect was discussed. The results show that the four products had good prediction effect for both no rain and light rain events. In the precipitation forecast of different magnitudes, the JMA model was the best for the precipitation forecast of the magnitude less than 25 mm, but the prediction of ECMWF for precipitation over 25 mm was better. For the daily precipitation forecast, the NCEP model had a poor performance, while the ECMWF model was the most accurate. For the precipitation process forecast, the prediction performance of KMA was obviously worse than the other three models. The integrated forecast had a good effect on reducing the prediction error and improving the precipitation process forecast, among which the TS integrated method weighted by different magnitudes had the best forecast effect, and had better improved the prediction effect of high level precipitation events.
-
表 1 数值预报产品基本信息
Table 1 Basic information of the numerical prediction products
数据中心 数据同化 垂直层数 (模式顶层/hPa) 分辨率 成员数目 预报时长/d 更新时间(UTC) 欧洲中期天气预报中心(ECMWF) 4D-Var 137 (0.01) TL1279 50+1 15/1 00/12 日本气象局(JMA) 4D-Var 100 (0.1) TL959 50+1 10/1 00/12 韩国气象局(KMA) 4D-Var 70 (0.1) N512 24+1 10/1 00/12 美国气象局(NCEP) GSI 64 (2.73) TL1534 20+1 16/1 00/06/12/18 表 2 集成预报与常规预报产品检验指标统计
Table 2 Verification index statistics of integrated forecast and conventional forecast products
评估指标 回归集成 Nash集成 TS集成 NECP ECMWF JMA KMA MAE/mm 3.71 3.67 3.66 4.30 3.91 3.79 3.96 RMSE/mm 8.08 8.19 8.24 9.03 8.69 8.89 8.92 Sl 0.49 0.27 0.27 0.24 0.27 0.36 0.34 Xl/mm −3.89 −7.59 −7.50 −7.60 −7.12 −6.98 −7.37 Sg 0.51 0.66 0.65 0.64 0.58 0.51 0.54 Xg/mm 3.53 2.52 2.51 3.86 3.41 2.53 2.78 AS 0.84 0.84 0.86 0.81 0.83 0.83 0.82 NSE 0.61 0.60 0.61 0.52 0.55 0.53 0.49 -
[1] BUIZZA R, MILLEER M, PALMER T N. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(560): 2887-2908. doi: 10.1002/qj.49712556006
[2] FREHLICH R. The definition of ‘truth’ for numerical weather prediction error statistics[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(654): 84-98. doi: 10.1002/qj.738
[3] JOLLIFFE I T, STEPHENSON D B. Forecast verification: a practitioner’s guide in atmospheric science[M]. 2nd ed. Chichester: Wiley, 2012.
[4] PAPPENBERGER F, BARTHOLMES J, THIELEN J, et al. New dimensions in early flood warning across the globe using grand-ensemble weather predictions[J]. Geophysical Research Letters, 2008, 35(10): L10404.
[5] 金君良, 舒章康, 陈敏, 等. 基于数值天气预报产品的气象水文耦合径流预报[J]. 水科学进展,2019,30(3):316-325. (JIN Junliang, SHU Zhangkang, CHEN Min, et al. Meteo-hydrological coupled runoff forecasting based on numerical weather prediction products[J]. Advances in Water Science, 2019, 30(3): 316-325. (in Chinese) [6] ANJUM M N, DING Y J, SHANGGUAN D H, et al. Evaluation of high-resolution satellite-based real-time and post-real-time precipitation estimates during 2010 extreme flood event in Swat River basin, Hindukush region[J]. Advances in Meteorology, 2016, 2016: 2604980.
[7] 王在文, 梁旭东, 范水勇, 等. 数值模式降水评分对分辨率的敏感性初探[J]. 暴雨灾害,2016,35(1):10-16. (WANG Zaiwen, LIANG Xudong, FAN Shuiyong, et al. Impact of spatial resolution on precipitation forecast score in numerical weather prediction models[J]. Torrential Rain and Disasters, 2016, 35(1): 10-16. (in Chinese) [8] 斯琴, 包福祥, 张旭. 基于EC集合预报产品的降水预报检验[J]. 中国农学通报,2016,32(7):162-167. (SI Qin, BAO Fuxiang, ZHANG Xu. Precipitation forecasting verification based on EC ensemble prediction products[J]. Chinese Agricultural Science Bulletin, 2016, 32(7): 162-167. (in Chinese) [9] 杜雅玲, 陆桂华, 吴志勇, 等. 基于TIGGE数据的中期降水预报在江苏省的应用效果评估[J]. 南水北调与水利科技,2017,15(6):17-25, 44. (DU Yaling, LU Guihua, WU Zhiyong, et al. Assessment of TIGGE medium-term precipitation forecast in Jiangsu Province[J]. South-to-North Water Transfers and Water Science & Technology, 2017, 15(6): 17-25, 44. (in Chinese) [10] 卞赟, 智协飞, 李佰平. 多模式集成方法对延伸期降水预报的改进[J]. 中国科技论文,2015,10(15):1813-1817. (BIAN Yun, ZHI Xiefei, LI Baiping. Multimodal ensemble method improvement for extended range consensus forecast of precipitation[J]. China Sciencepaper, 2015, 10(15): 1813-1817. (in Chinese) [11] 刘汉武, 王文本, 范裕祥, 等. 基于多模式的巢湖降水集成预报效果检验[J]. 气象与减灾研究,2016,39(4):283-289. (LIU Hanwu, WANG Wenben, FAN Yuxiang, et al. Validation of precipitation ensemble prediction based on multimodel in Chaohu lake[J]. Meteorology and Disaster Reduction Research, 2016, 39(4): 283-289. (in Chinese) [12] 荣艳敏, 盛春岩, 范苏丹, 等. 概率匹配平均法在山东强降水预报中的应用[J]. 海洋气象学报,2017,37(3):95-101. (RONG Yanmin, SHENG Chunyan, FAN Sudan, et al. Applications of probability matching method in heavy rainfall forecast in Shandong province[J]. Journal of Marine Meteorology, 2017, 37(3): 95-101. (in Chinese) [13] REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204. doi: 10.1038/s41586-019-0912-1
[14] 代刊, 朱跃建, 毕宝贵. 集合模式定量降水预报的统计后处理技术研究综述[J]. 气象学报,2018,76(4):493-510. (DAI Kan, ZHU Yujian, BI Baogui. The review of statistical post-process technologies for quantitative precipitation forecast of ensemble prediction system[J]. Acta Meteorologica Sinica, 2018, 76(4): 493-510. (in Chinese) [15] 毕宝贵, 代刊, 王毅, 等. 定量降水预报技术进展[J]. 应用气象学报,2016,27(5):534-549. (BI Baogui, DAI Kan, WANG Yi, et al. Advances in techniques of quantitative precipitation forecast[J]. Journal of Applied Meteorological Science, 2016, 27(5): 534-549. (in Chinese) [16] KHAN M M, SHAMSELDIN A Y, MELVILLE B W. Impact of ensemble size on forecasting occurrence of rainfall using TIGGE precipitation forecasts[J]. Journal of Hydrologic Engineering, 2014, 19(4): 732-738. doi: 10.1061/(ASCE)HE.1943-5584.0000864
[17] SWINBANK R, KYOUDA M, BUCHANAN P, et al. The TIGGE project and its achievements[J]. Bulletin of the American Meteorological Society, 2016, 97(1): 49-67. doi: 10.1175/BAMS-D-13-00191.1
[18] 彭勇, 徐炜, 王萍, 等. 耦合TIGGE降水集合预报的洪水预报[J]. 天津大学学报(自然科学与工程技术版),2015,48(2):177-184. (PENG Yong, XU Wei, WANG Ping, et al. Flood forecasting coupled with TIGGE ensemble precipitation forecasts[J]. Journal of Tianjin University (Science and Technology), 2015, 48(2): 177-184. (in Chinese) [19] 陆桂华, 吴志勇, 何海. 水文循环过程及定量预报[M]. 北京: 科学出版社, 2010: 231-244. LU Guihua, WU Zhiyong, HE Hai. Hydrological cycle process and its quantitative forecast[M]. Beijing: Science Press, 2010: 231-244. (in Chinese)
[20] 彭九慧, 丁力, 杨庆红. 几种降水集成预报方法的对比分析[J]. 气象科技,2008,36(5):520-523. (PENG Jiuhui, DING Li, YANG Qinghong. Comparative analysis of several consensus precipitation forecasting methods[J]. Meteorological Science and Technology, 2008, 36(5): 520-523. (in Chinese) [21] 崔东文. 基于多元变量组合的回归支持向量机集成模型及其应用[J]. 水利水运工程学报,2014(2):66-73. (CUI Dongwen. A regression support vector machine integrated model based on multivariate combinations and its application[J]. Hydro-Science and Engineering, 2014(2): 66-73. (in Chinese) [22] SU X, YUAN H L, ZHU Y J, et al. Evaluation of TIGGE ensemble predictions of Northern Hemisphere summer precipitation during 2008-2012[J]. Journal of Geophysical Research, 2014, 119(12): 7292-7310.