Advances in research on the influence of vegetation on river flow and bank morphology evolution
-
摘要:
植被作为河流系统重要的阻力因素,在河道形态演变方面发挥着至关重要的作用。植被地表结构改变了河道水流阻力、河床切应力、流速分布及水流紊动特性,植被根系增强了岸滩土体强度和稳定性。从植被地表茎干结构对水流特性影响和植被地下根系加筋作用对岸滩稳固影响两个方面的研究进行了回顾和综述,并指出今后在植被水流研究方面,可进一步考虑植被枝、叶对水流特性的影响,加强对柔性植被变形、摆动引起的动边界问题的研究,以及全面考虑河道形态边界条件的影响,特别是含植被的分汊河道水流特性还需深入研究;在植被根系固土护岸方面,可同时考虑岸滩土体非均质性、河道水流对岸滩的侵蚀冲刷作用及水体渗流对岸滩土体力学特性的影响;在植被河道形态演变预测方面,可以综合考虑含植被河道的水动力学及土力学问题,以及两者间的互馈响应机制。
Abstract:As an important resistance factor of the river system, vegetation plays a vital role in the evolution of river morphology. The existence of the vegetation above ground structure changes the resistance of the river channel, the shear stress of the river bed, the velocity distribution and the turbulence characteristics of the river flow. At the same time, the existence of the vegetation roots can enhance the strength and stability of the riparian soil. This article reviews the effects of vegetation stems on water flow characteristics and the effects of vegetation roots on the stability of riparian, and points out that in future vegetation water flow research, the influence of vegetation branches and leaves on water flow characteristics, as well as the deformation and swing of flexible vegetation under the action of water flow, should be further considered. And the impact of the boundary conditions of the river forms should be fully considered, particularly the vegetation characteristics of branching river need further studies. In the aspect of vegetation root system for soil consolidation and bank protection, the heterogeneity of the riparian soil, the erosion of the river flow on the riparian, and the impact of water seepage on the mechanical properties of the beach soil should be considered at the same time. In the prediction of vegetation river evolution, the hydrodynamic problems and soil mechanics problems with vegetation and the mutual feedback response mechanism between them should also be comprehensively considered.
-
Keywords:
- vegetation /
- river /
- water flow /
- root system /
- river bank
-
-
[1] 唐洪武, 闫静, 吕升奇. 河流管理中含植物水流问题研究进展[J]. 水科学进展,2007,18(5):785-792 doi: 10.3321/j.issn:1001-6791.2007.05.024 TANG Hongwu, YAN Jing, LÜ Shengqi. Advances in research on flows with vegetation in river management[J]. Advances in Water Science, 2007, 18(5): 785-792. (in Chinese) doi: 10.3321/j.issn:1001-6791.2007.05.024
[2] 王忖. 有植被的河道水流试验研究[D]. 南京: 河海大学, 2003. WANG Cun. Experimental study on river flow with vegetation[D]. Nanjing: Hohai University, 2003. (in Chinese)
[3] 及金楠. 林分根系空间分布与水平阶整地对土质坡面稳定性的影响——以我国黄土高原刺槐林和侧柏林为例[D]. 北京: 北京林业大学, 2011. JI Jinnan. Effects of spatial variation of tree root characteristics and terraces on slope stability——a case study on black locust (Robinia pseudoacacia) and arborvitae (Platycladus orientalis) stands on the loess plateau, China[D]. Beijing: Beijing Forestry University, 2011. (in Chinese)
[4] 宋维峰. 林木根系与均质土间相互物理作用机理研究[D]. 北京: 北京林业大学, 2006. SONG Weifeng. Study on physical mechanism of interface between root system and loess soils[D]. Beijing: Beijing Forestry University, 2006. (in Chinese)
[5] 赵瑜琪, 彭清娥, 史学伟, 等. 非淹没刚性挺水植被对弯道水流特性的影响[J]. 水利水运工程学报,2021(6):80-88 ZHAO Yuqi, PENG Qing’e, SHI Xuewei, et al. Influence of non-submerged rigid vegetation on the flow characteristics of bend[J]. Hydro-Science and Engineering, 2021(6): 80-88. (in Chinese)
[6] JÄRVELÄ J. Flow resistance of flexible and stiff vegetation: a flume study with natural plants[J]. Journal of Hydrology, 2002, 269(1/2): 44-54.
[7] LI Y H, XIE L Q, SU T C. Resistance of open-channel flow under the effect of bending deformation of submerged flexible vegetation[J]. Journal of Hydraulic Engineering, 2018, 144(3): 04017072. doi: 10.1061/(ASCE)HY.1943-7900.0001419
[8] 姬昌辉, 洪大林, 丁瑞, 等. 含淹没植被明渠水位及糙率变化试验研究[J]. 水利水运工程学报,2013(1):60-65 JI Changhui, HONG Dalin, DING Rui, et al. Variation characteristics of water level and roughness of an open channel with submerged vegetation[J]. Hydro-Science and Engineering, 2013(1): 60-65. (in Chinese)
[9] 徐卫刚, 张化永, 王中玉, 等. 植被对河道水流影响的研究进展[J]. 应用生态学报,2013,24(1):251-259 XU Weigang, ZHANG Huayong, WANG Zhongyu, et al. Effects of vegetation on river flow: A review[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 251-259. (in Chinese)
[10] THOMPSON G T, ROBERSON J A. A Theory of flow resistance for vegetated channels[J]. Transactions of the ASAE, 1976, 19(2): 288-293. doi: 10.13031/2013.36014
[11] REE W O. Retardation coefficients for row crops in diversion terraces[J]. American Society of Agricultural and Biological Engineers, 1958, 1(1): 78-80. doi: 10.13031/2013.41221
[12] KOUWEN N, UNNY T E, HILL H M. Flow retardance in vegetated channels[J]. Journal of the Irrigation and Drainage Division, 1969, 95(2): 329-342. doi: 10.1061/JRCEA4.0000652
[13] 唐洪武, 闫静, 肖洋, 等. 含植物河道曼宁阻力系数的研究[J]. 水利学报,2007,38(11):1347-1353 doi: 10.3321/j.issn:0559-9350.2007.11.013 TANG Hongwu, YAN Jing, XIAO Yang, et al. Manning’s roughness coefficient of vegetated channels[J]. Journal of Hydraulic Engineering, 2007, 38(11): 1347-1353. (in Chinese) doi: 10.3321/j.issn:0559-9350.2007.11.013
[14] PETRYK S, BOSMAJIAN III G. Analysis of flow through vegetation[J]. Journal of the Hydraulics Division, 1975, 101(7): 871-884. doi: 10.1061/JYCEAJ.0004397
[15] WU F C, SHEN H W, CHOU Y J. Variation of roughness coefficients for unsubmerged and submerged vegetation[J]. Journal of Hydraulic Engineering, 1999, 125(9): 934-942. doi: 10.1061/(ASCE)0733-9429(1999)125:9(934)
[16] 李树慧, 张银华, 蔡怀森. 河岸刚性植被缓冲带对水流阻力的影响[J]. 水电能源科学,2020,38(9):32-35 LI Shuhui, ZHANG Yinhua, CAI Huaisen. Influence of rigid vegetation buffer zone on flow resistance[J]. Water Resources and Power, 2020, 38(9): 32-35. (in Chinese)
[17] KOTHYARI U C, HASHIMOTO H, HAYASHI K. Effect of tall vegetation on sediment transport by channel flows[J]. Journal of Hydraulic Research, 2009, 47(6): 700-710. doi: 10.3826/jhr.2009.3317
[18] JORDANOVA A A, JAMES C S. Experimental study of bed load transport through emergent vegetation[J]. Journal of Hydraulic Engineering, 2003, 129(6): 474-478. doi: 10.1061/(ASCE)0733-9429(2003)129:6(474)
[19] NEPF H M, VIVONI E R. Flow structure in depth-limited, vegetated flow[J]. Journal of Geophysical Research, 2000, 105(C12): 28547-28557. doi: 10.1029/2000JC900145
[20] ETMINAN V, GHISALBERTI, LOWE R J. Predicting bed shear stresses in vegetated channels[J]. Water Resources Research, 2018, 54(11): 9187-9206. doi: 10.1029/2018WR022811
[21] KANG H, CHOI S U. 3D numerical simulation of compound open-channel flow with vegetated floodplains by Reynolds stress model[J]. KSCE Journal of Civil Engineering, 2005, 9(1): 7-11. doi: 10.1007/BF02829092
[22] ZHANG X F, YANG W T, XIA J Q. Bed shear stress in non-uniform flow[J]. Environmental Fluid Mechanics, 2016, 16(4): 777-792. doi: 10.1007/s10652-016-9448-1
[23] STEPHAN U, GUTKNECHT D. Hydraulic resistance of submerged flexible vegetation[J]. Journal of Hydrology, 2002, 269(1/2): 27-43.
[24] 槐文信, 韩杰, 曾玉红, 等. 基于掺长理论的淹没柔性植被水流流速分布研究[J]. 应用数学和力学,2009,30(3):325-332 HUAI Wenxin, HAN Jie, ZENG Yuhong, et al. Study on velocity distribution of flow with submerged flexible vegetations based on mixing-length approach[J]. Applied Mathematics and Mechanics, 2009, 30(3): 325-332. (in Chinese)
[25] EL-HAKIM O, SALAMA M M. Velocity distribution inside and above branched flexible roughness[J]. Journal of Irrigation and Drainage Engineering, 1992, 118(6): 914-927. doi: 10.1061/(ASCE)0733-9437(1992)118:6(914)
[26] CAROLLO F G, FERRO V, TERMINI D. Flow velocity measurements in vegetated channels[J]. Journal of Hydraulic Engineering, 2002, 128(7): 664-673. doi: 10.1061/(ASCE)0733-9429(2002)128:7(664)
[27] 闫静, 唐洪武, 田志军, 等. 植物对明渠流速分布影响的试验研究[J]. 水利水运工程学报,2011(4):138-142 YAN Jing, TANG Hongwu, TIAN Zhijun, et al. Experimental study on the influence of vegetation on the velocity distribution of open channel flows[J]. Hydro-Science and Engineering, 2011(4): 138-142. (in Chinese)
[28] 刘彦东. 植物对河道水流特性的影响研究[D]. 天津: 天津大学, 2014. LIU Yandong. Study of plants’ influence on flow characteristics[D]. Tianjin: Tianjin University, 2014. (in Chinese)
[29] FISCHER-ANTZE T, STOESSER T, BATES P, et al. 3D numerical modelling of open-channel flow with submerged vegetation[J]. Journal of Hydraulic Research, 2001, 39(3): 303-310. doi: 10.1080/00221680109499833
[30] NEPF H M. Drag, turbulence, and diffusion in flow through emergent vegetation[J]. Water Resources Research, 1999, 35(2): 479-489. doi: 10.1029/1998WR900069
[31] LÓPEZ F, GARCÍA M. Open-channel flow through simulated vegetation: Suspended sediment transport modeling[J]. Water Resources Research, 1998, 34(9): 2341-2352. doi: 10.1029/98WR01922
[32] NEZU I, ONITSUKA K. Turbulent structures in partly vegetated open-channel flows with LDA and PI V measurements[J]. Journal of Hydraulic Research, 2001, 39(6): 629-642. doi: 10.1080/00221686.2001.9628292
[33] 张英豪, 赖锡军. 苦草对水流结构的影响研究[J]. 水科学进展,2015,26(1):99-106 ZHANG Yinghao, LAI Xijun. Impact of Vallisneria natans on flow structure[J]. Advances in Water Science, 2015, 26(1): 99-106. (in Chinese)
[34] 吴福生, 姜树海. 柔性植物与刚性植物紊流特性研究[J]. 水动力学研究与进展A辑,2008,23(2):158-165 WU Fusheng, JIANG Shuhai. Turbulent characteristics in open channel with flexible and rigid vegetation[J]. Chinese Journal of Hydrodynamics, 2008, 23(2): 158-165. (in Chinese)
[35] 焦军丽, 王丹, 李文奇, 等. 植被群密度对河道水流紊动特性影响的试验研究[J]. 水力发电学报,2018,37(12):75-84 doi: 10.11660/slfdxb.20181208 JIAO Junli, WANG Dan, LI Wenqi, et al. Turbulent characteristics of river channel flow with vegetation patches of different planting densities[J]. Journal of Hydroelectric Engineering, 2018, 37(12): 75-84. (in Chinese) doi: 10.11660/slfdxb.20181208
[36] 李艳红, 李栋, 范静磊. 含淹没植物河流水流紊动强度最大值及其影响因素[J]. 水科学进展,2007,18(5):706-710 doi: 10.3321/j.issn:1001-6791.2007.05.012 LI Yanhong, LI Dong, FAN Jinglei. Turbulence intensity maximum and its influence factors in submerged river flow with plant[J]. Advances in Water Science, 2007, 18(5): 706-710. (in Chinese) doi: 10.3321/j.issn:1001-6791.2007.05.012
[37] 赵连权, 白晓华, 李丰超, 等. 含天然沉水植物明渠紊流特性研究[J]. 水电能源科学,2013,31(11):113-116 ZHAO Lianquan, BAI Xiaohua, LI Fengchao, et al. Turbulent characteristics of open channel with natural submerged plant[J]. Water Resources and Power, 2013, 31(11): 113-116. (in Chinese)
[38] 赵芳. 刚性植被作用下明渠水流的水动力特性研究[D]. 武汉: 武汉大学, 2017. ZHAO Fang. Research on hydraulic characteristics of open channel flows with rigid vegetation[D]. Wuhan: Wuhan University, 2017. (in Chinese)
[39] 杨克君, 刘兴年, 曹叔尤, 等. 植被作用下的复式河槽漫滩水流紊动特性[J]. 水利学报,2005,36(10):1263-1268 doi: 10.3321/j.issn:0559-9350.2005.10.022 YANG Kejun, LIU Xingnian, CAO Shuyou, et al. Turbulence characteristics of overbank flow in compound river channel with vegetated floodplain[J]. Journal of Hydraulic Engineering, 2005, 36(10): 1263-1268. (in Chinese) doi: 10.3321/j.issn:0559-9350.2005.10.022
[40] 樊新建, 雷鹏, 王成, 等. 柔性淹没植被的排列方式对水流特性的影响[J]. 华中科技大学学报(自然科学版),2020,48(3):127-132 FAN Xinjian, LEI Peng, WANG Cheng, et al. Influence of flexible submerged vegetation on flow characteristics under different arrangement patterns[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2020, 48(3): 127-132. (in Chinese)
[41] WU W M, WANG S S Y. A Depth-averaged two-dimensional numerical model of flow and sediment transport in open channels with vegetation[M]∥BENNETT S J, SIMON A. Riparian Vegetation and Fluvial Geomorphology, Volume 8. Washington: American Geophysical Union, 2013.
[42] ZHANG M L, HAO Z N, ZHANG Y P, et al. Numerical simulation of solitary and random wave propagation through vegetation based on VOF method[J]. Acta Oceanologica Sinica, 2013, 32(7): 38-46. doi: 10.1007/s13131-013-0330-4
[43] HSIEH P C, SHIU Y S. Analytical solutions for water flow passing over a vegetal area[J]. Advances in Water Resources, 2006, 29(9): 1257-1266. doi: 10.1016/j.advwatres.2005.10.004
[44] 吴梦瑶, 张景新. 基于多孔介质模型的有限柱群绕流模拟[J]. 水动力学研究与进展A辑,2019,34(4):467-474 WU Mengyao, ZHANG Jingxin. Numerical simulation of flow around a finite circular array of cylinders using porous media model[J]. Chinese Journal of Hydrodynamics, 2019, 34(4): 467-474. (in Chinese)
[45] 刘诚, 沈永明. 水生植物对河道形态影响的三维湍流模型[J]. 水利学报,2010,41(2):127-133 LIU Cheng, SHEN Yongming. Numerical modeling of alluvial landforms with the impacts of aquatic vegetation[J]. Journal of Hydraulic Engineering, 2010, 41(2): 127-133. (in Chinese)
[46] DE LIMA P H S, JANZEN J G, NEPF H M. Flow patterns around two neighboring patches of emergent vegetation and possible implications for deposition and vegetation growth[J]. Environmental Fluid Mechanics, 2015, 15(4): 881-898. doi: 10.1007/s10652-015-9395-2
[47] 杨颖宜, 李东子, 马永顺, 等. 基于Fluent仿真软件的滩地植被作用下复式河道水动力特性的精细化数值模拟[J]. 大连海洋大学学报,2021,36(2):317-324 YANG Yingyi, LI Dongzi, MA Yongshun, et al. Refinement three-dimensional simulation of effect of floodplain vegetation on hydrodynamic characteristics in compound open channel based on fluent software[J]. Journal of Dalian Ocean University, 2021, 36(2): 317-324. (in Chinese)
[48] 曾琳, 周晓泉, 杨克君. 滩地植被作用下非对称复式河道的三维数值模拟[J]. 吉林水利,2009(4):1-6 doi: 10.3969/j.issn.1009-2846.2009.04.001 ZENG Lin, ZHOU Xiaoquan, YANG Kejun. Three-dimensional numerical simulation of asymmetric compound channels under beach vegetation[J]. Jilin Water Resources, 2009(4): 1-6. (in Chinese) doi: 10.3969/j.issn.1009-2846.2009.04.001
[49] NADAOKA K. Shallow-water turbulence modeling and horizontal large-eddy computation of river flow[J]. Journal of Hydraulic Engineering, 1998, 124(5): 493-500. doi: 10.1061/(ASCE)0733-9429(1998)124:5(493)
[50] 宿晓辉, 张建新, 李志伟, 等. 带有植物的河道水流浅水紊流运动大涡模拟[J]. 大连理工大学学报,2003,43(2):223-229 doi: 10.3321/j.issn:1000-8608.2003.02.021 SU Xiaohui, ZHANG Jianxin, LI Zhiwei, et al. k-l LES of shallow-water turbulent flow in open channels with a vegetated domain[J]. Journal of Dalian University of Technology, 2003, 43(2): 223-229. (in Chinese) doi: 10.3321/j.issn:1000-8608.2003.02.021
[51] SU X H, LI C W, CHEN B H. Three-dimensional large eddy simulation of free surface turbulent flow in open channel within submerged vegetation domain[J]. Journal of Hydrodynamics (SerB), 2003, 15(3): 35-43.
[52] YAN C, NEPF H M, HUANG W X, et al. Large eddy simulation of flow and scalar transport in a vegetated channel[J]. Environmental Fluid Mechanics, 2017, 17(3): 497-519. doi: 10.1007/s10652-016-9503-y
[53] CUI J, NEARY V S. LES study of turbulent flows with submerged vegetation[J]. Journal of Hydraulic Research, 2008, 46(3): 307-316. doi: 10.3826/jhr.2008.3129
[54] 夏振尧, 刘琦, 许文年, 等. 多花木蓝根系与土体界面摩阻特征[J]. 水土保持学报,2018,32(1):128-134 XIA Zhenyao, LIU Qi, XU Wennian, et al. Characteristics of interface friction between indigofera amblyantha root system and soil[J]. Journal of Soil and Water Conservation, 2018, 32(1): 128-134. (in Chinese)
[55] 雷洁, 张国明, 刘连友, 等. 土壤抗剪强度测定与影响因素研究进展[J]. 北京师范大学学报(自然科学版),2016,52(4):486-492 LEI Jie, ZHANG Guoming, LIU Lianyou, et al. Measuring soil shear strength and impact factors[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(4): 486-492. (in Chinese)
[56] 朱锦奇, 王云琦, 王玉杰, 等. 基于两种计算模型的油松与元宝枫根系固土效能分析[J]. 水土保持通报,2015,35(4):277-282 ZHU Jinqi, WANG Yunqi, WANG Yujie, et al. An analysis on soil physical enhancement effects of root system of pinus tabulaeformis and acer truncatum based on two models[J]. Bulletin of Soil and Water Conservation, 2015, 35(4): 277-282. (in Chinese)
[57] 张飞, 陈静曦, 陈向波. 边坡生态防护中表层含根系土抗剪试验研究[J]. 土工基础,2005,19(3):25-27 doi: 10.3969/j.issn.1004-3152.2005.03.009 ZHANG Fei, CHEN Jingxi, CHEN Xiangbo. The study on shear strength of facial soil-in-root of biotechnological protection on side slope[J]. Soil Engineering and Foundation, 2005, 19(3): 25-27. (in Chinese) doi: 10.3969/j.issn.1004-3152.2005.03.009
[58] 刘秀萍, 陈丽华, 宋维峰. 林木根系与黄土复合体的三轴试验[J]. 林业科学,2007,43(5):54-58 doi: 10.3321/j.issn:1001-7488.2007.05.009 LIU Xiuping, CHEN Lihua, SONG Weifeng. Triaxial tests on root-soil composite[J]. Scientia Silvae Sinicae, 2007, 43(5): 54-58. (in Chinese) doi: 10.3321/j.issn:1001-7488.2007.05.009
[59] HENGCHAOVANICH D. VGT: A bioengineering and phytoremediation option for the new millennium[C]∥ Proceedings Third International Conference on Vetiver. Guangzhou: Chinese Academy of Sciences, International Vetiver Network, 2003.
[60] 杨永红, 刘淑珍, 王成华. 土壤含水量减少对提高浅表层滑坡稳定性的影响[J]. 水土保持研究,2007,14(5):290-292 YANG Yonghong, LIU Shuzhen, WANG Chenghua. Impacts of decrease of soil moisture content on stability of shallow and surface landslide[J]. Research of Soil and Water Conservation, 2007, 14(5): 290-292. (in Chinese)
[61] WU T H, MCKINNELL III W P, SWANSTON D N. Strength of tree roots and landslides on Prince of Wales Island, Alaska[J]. Canadian Geotechnical Journal, 1979, 16(1): 19-33. doi: 10.1139/t79-003
[62] POLLEN N, SIMON A. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model[J]. Water Resources Research, 2005, 41(7): 07025.
[63] SCHWARZ M, COHEN D, OR D. Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling[J]. Journal of Geophysical Research: Earth Surface, 2011, 116(F2): 02007.
[64] 郝由之. 考虑复合植被根系加筋锚固作用的坡式生态护岸稳定性研究[D]. 邯郸: 河北工程大学, 2018. HAO Youzhi. Study on stability of slope ecological revetment considering reinforced anchorage of composite vegetation roots[D]. Handan: Hebei University of Engineering, 2018. (in Chinese)
计量
- 文章访问数: 489
- HTML全文浏览量: 760
- PDF下载量: 137