三峡升船机齿条模型试验及状态监测方案研究

曹毅, 王可, 李伟雄, 胡吉祥, 石端伟

曹毅,王可,李伟雄,等. 三峡升船机齿条模型试验及状态监测方案研究[J]. 水利水运工程学报,2024(1):156-163.. DOI: 10.12170/20221010001
引用本文: 曹毅,王可,李伟雄,等. 三峡升船机齿条模型试验及状态监测方案研究[J]. 水利水运工程学报,2024(1):156-163.. DOI: 10.12170/20221010001
(CAO Yi, WANG Ke, LI Weixiong, et al. Research on modeling, testing, and state monitoring of racks in the Three Gorges ship lift[J]. Hydro-Science and Engineering, 2024(1): 156-163. (in Chinese)). DOI: 10.12170/20221010001
Citation: (CAO Yi, WANG Ke, LI Weixiong, et al. Research on modeling, testing, and state monitoring of racks in the Three Gorges ship lift[J]. Hydro-Science and Engineering, 2024(1): 156-163. (in Chinese)). DOI: 10.12170/20221010001

三峡升船机齿条模型试验及状态监测方案研究

详细信息
    作者简介:

    曹 毅(1970—),男,湖南益阳人,教授级高级工程师,主要从事水利水电及通航建筑物金属结构和机电设备研究。E-mail:cao_yi@ctg.com.cn

    通讯作者:

    胡吉祥(E-mail:271981366@qq.com

  • 中图分类号: U642

Research on modeling, testing, and state monitoring of racks in the Three Gorges ship lift

  • 摘要:

    三峡升船机采用齿轮齿条爬升式垂直升船机型式,其中齿条作为升船机船厢升降运行的传动设备,其设备安全可靠性对升船机的稳定运行至关重要,为其设置智能状态监测系统十分必要。通过小比例试验台,对齿轮有可能出现的缺陷与不良工况进行模拟试验,并采用基于同步压缩小波变换时频谱切片的分析方法及门控循环神经网络的故障诊断方法,进行齿条不良润滑、齿面点蚀与齿根裂纹故障信号的采集与识别。以试验结果为依据,提出了三峡升船机齿条状态监测和故障诊断方案,为三峡升船机齿条状态监测和故障诊断方案的现场实施奠定了良好基础。

    Abstract:

    The Three Gorges ship lift employs a vertical ship lift model using gears and racks, with the racks serving as the transmission component for the driving equipment of the ship lift during lifting operations. The safety and reliability of the equipment are crucial for the overall safety of the ship lift operation. Therefore, it is essential to establish an intelligent online state monitoring system for this purpose. This study constructs a small-scale test bench to simulate various defect conditions and utilizes the frequency spectrum slice analysis method based on synchronous compression wavelet transform and the fault diagnosis method of gated cyclic neural network to detect and identify issues such as poor lubrication, tooth surface pitting, and tooth root cracks in the racks. The experiments demonstrate the effectiveness of this diagnostic approach. Building upon these findings, an online condition monitoring scheme for the pinions and racks used in the Three Gorges ship lift is proposed, aiming to provide technical support for the intelligent management and maintenance of the lift.

  • 图  1   门控循环神经网络结构

    Figure  1.   Gated Recurrent Unit network structure

    图  2   三峡升船机齿轮齿条小比例模型试验平台

    Figure  2.   Experimental platform for gear/rack of the Three Gorges ship lift

    图  3   试验模拟工况

    Figure  3.   Experimental simulation conditions

    图  4   各工况同步压缩小波变换切片

    Figure  4.   Section of synchronous compression wavelet transform for each condition

    图  5   门控循环神经网络模型训练

    Figure  5.   Training of Gated Recurrent Unit network model

    图  6   传感器测点布置

    Figure  6.   Sensor arrangement

    图  7   状态监测方案实施步骤

    Figure  7.   The implementation steps of the online status monitoring scheme

    表  1   各工况同步压缩小波变换特征值

    Table  1   Characteristic value of synchronous compression wavelet transform for each condition 单位:10−4 m/s2

    工况 均值 峰峰值 均方根
    2倍频 3倍频 2倍频 3倍频 2倍频 3倍频
    良好润滑 0.198 0 0.211 6 1.448 3 1.545 1 0.283 6 0.315 5
    不良润滑 0.197 4 0.336 9 1.421 2 2.396 3 0.271 9 0.498 9
    良好润滑+点蚀 0.172 8 0.275 6 1.406 3 3.017 6 0.251 7 0.443 8
    良好润滑+点蚀+裂纹 0.202 6 0.228 2 1.621 7 1.998 0 0.296 3 0.345 7
    下载: 导出CSV

    表  2   提取统计特征参数

    Table  2   Extracted characteristic parameters

    特征值 计算式 特征值 计算式
    平均值 $ {{x}_{\mathrm{m}}={\displaystyle\sum\limits_{n=1}^{N}x\left(n\right)}/{N}} $ 峭度因子 $ {{x}_{\mathrm{k}\mathrm{u}}=\dfrac{\displaystyle\sum\limits _{n=1}^{N}{\left(x\left(n\right)-{x}_{\mathrm{m}}\right)}^{4}}{\left(N-1\right){x}_{\mathrm{s}\mathrm{t}\mathrm{d}}^{4}}} $
    均方根值 $ {{x}_{\mathrm{r}\mathrm{m}\mathrm{s}}=\sqrt[\uproot{18}{\scriptstyle{2}}]{{\displaystyle\sum\limits _{n=1}^{N}{\left(x\left(n\right)\right)}^{2}}/{N}}} $ 偏度因子 $ {{x}_{\mathrm{s}\mathrm{k}}=\dfrac{\displaystyle\sum\limits _{n=1}^{N}{\left(x\left(n\right)-{x}_{\mathrm{m}}\right)}^{3}}{\left(N-1\right){x}_{\mathrm{s}\mathrm{t}\mathrm{d}}^{3}}} $
    峰峰值 $ {{x}_{\mathrm{p}}=\mathrm{max}\left(x\left(n\right)\right)-\mathrm{min}\left(x\left(n\right)\right)} $ 裕度因子 $ {{x}_{\mathrm{p}\mathrm{f}}=\dfrac{\mathrm{max}\left(x\left(n\right)\right)}{{\left(\dfrac{1}{N}\displaystyle\sum\limits _{n=1}^{N}\sqrt{\left|x\left(n\right)\right|}\right)}^{2}}} $
    标准差 $ {{x}_{\mathrm{s}\mathrm{t}\mathrm{d}}=\sqrt[\uproot{18}{\scriptstyle{2}}]{{\displaystyle\sum\limits _{n=1}^{N}{\left(x\left(n\right)-{x}_{\mathrm{m}}\right)}^{2}}/{(N-1)}}} $ 变异系数 $ {{x}_{\mathrm{c}\mathrm{v}}={{x}_{\mathrm{s}\mathrm{t}\mathrm{d}}}/{{x}_{\mathrm{m}}}} $
    脉冲因子 $ {{x}_{\mathrm{c}\mathrm{f}}={\mathrm{max}\left(x\left(n\right)\right)}/{{x}_{\mathrm{a}\mathrm{m}}}} $
      注:xam为信号整流平均值,即信号绝对值的平均值。
    下载: 导出CSV
  • [1] 钮新强, 覃利明, 于庆奎. 三峡工程齿轮齿条爬升式升船机设计[J]. 中国工程科学,2011,13(7):96-103. (NIU Xinqiang, QIN Liming, YU Qingkui. The design of gear rack climbing type ship lift of Three Gorges Project[J]. Engineering Sciences, 2011, 13(7): 96-103. (in Chinese)

    NIU Xinqiang, QIN Liming, YU Qingkui. The design of gear rack climbing type ship lift of Three Gorges Project[J]. Engineering Sciences, 2011, 137): 96-103. (in Chinese)

    [2] 狄成云. 三峡升船机齿轮齿条故障诊断系统设计研究[D]. 武汉: 武汉大学, 2021. (DI Chengyun. Design and research of fault diagnosis system for gear-rack of Three Gorges ship lift[D]. Wuhan: Wuhan University, 2021. (in Chinese)

    DI Chengyun. Design and research of fault diagnosis system for gear-rack of Three Gorges ship lift[D]. Wuhan: Wuhan University, 2021. (in Chinese)

    [3] 王翀翮. 基于同步压缩小波变换的旋转机械故障诊断方法研究[D]. 金华: 浙江师范大学, 2020. (WANG Chonghe. Research on fault diagnosis method for rotating machinery based on synchrosqueezing wavelet transform[D]. Jinhua: Zhejiang Normal University, 2020. (in Chinese)

    WANG Chonghe. Research on fault diagnosis method for rotating machinery based on synchrosqueezing wavelet transform[D]. Jinhua: Zhejiang Normal University, 2020. (in Chinese)

    [4] 赵丽娟, 刘晓东, 李苗. 齿轮故障诊断方法研究进展[J]. 机械强度,2016,38(5):951-956. (ZHAO Lijuan, LIU Xiaodong, LI Miao. Research progress of methods of gear fault diagnosis[J]. Journal of Mechanical Strength, 2016, 38(5): 951-956. (in Chinese)

    ZHAO Lijuan, LIU Xiaodong, LI Miao. Research progress of methods of gear fault diagnosis[J]. Journal of Mechanical Strength, 2016, 385): 951-956. (in Chinese)

    [5] 刘义亚, 李可, 陈鹏. 基于同步压缩小波变换的滚动轴承故障诊断[J]. 中国机械工程,2018,29(5):585-590. (LIU Yiya, LI Ke, CHEN Peng. Fault diagnosis for rolling bearings based on synchrosqueezing wavelet transform[J]. China Mechanical Engineering, 2018, 29(5): 585-590. (in Chinese)

    LIU Yiya, LI Ke, CHEN Peng. Fault diagnosis for rolling bearings based on synchrosqueezing wavelet transform[J]. China Mechanical Engineering, 2018, 295): 585-590. (in Chinese)

    [6] 龚安民, 王炳和, 曲毅. 基于同步压缩小波变换的通信信号调制识别[J]. 电光与控制,2015,22(12):50-53, 71. (GONG Anmin, WANG Binghe, QU Yi. Modulation recognition of communication signals based on synchrosqueezed wavelet transform[J]. Electronics Optics & Control, 2015, 22(12): 50-53, 71. (in Chinese)

    GONG Anmin, WANG Binghe, QU Yi. Modulation recognition of communication signals based on synchrosqueezed wavelet transform[J]. Electronics Optics & Control, 2015, 2212): 50-53, 71. (in Chinese)

    [7] 严作堂, 陈宏. 基于振动信号诊断齿轮断齿故障新方法[J]. 机械传动,2012,36(9):93-95

    YAN Zuotang, CHEN Hong. Diagnosis method of broken teeth fault of gear based on vibration signal[J]. Journal of Mechanical Transmission, 2012, 36(9): 93-95. (in Chinese)

    [8] 陈是扦, 彭志科, 周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报,2020,56(17):91-107. (CHEN Shiqian, PENG Zhike, ZHOU Peng. Review of signal decomposition theory and its applications in machine fault diagnosis[J]. Journal of Mechanical Engineering, 2020, 56(17): 91-107. (in Chinese) doi: 10.3901/JME.2020.17.091

    CHEN Shiqian, PENG Zhike, ZHOU Peng. Review of signal decomposition theory and its applications in machine fault diagnosis[J]. Journal of Mechanical Engineering, 2020, 5617): 91-107. (in Chinese) doi: 10.3901/JME.2020.17.091

    [9] 姚程文, 杨苹, 刘泽健. 基于CNN-GRU混合神经网络的负荷预测方法[J]. 电网技术,2020,44(9):3416-3424. (YAO Chengwen, YANG Ping, LIU Zejian. Load forecasting method based on CNN-GRU hybrid neural network[J]. Power System Technology, 2020, 44(9): 3416-3424. (in Chinese)

    YAO Chengwen, YANG Ping, LIU Zejian. Load forecasting method based on CNN-GRU hybrid neural network[J]. Power System Technology, 2020, 449): 3416-3424. (in Chinese)

    [10] 周奇才, 沈鹤鸿, 赵炯, 等. 基于改进堆叠式循环神经网络的轴承故障诊断[J]. 同济大学学报(自然科学版),2019,47(10):1500-1507. (ZHOU Qicai, SHEN Hehong, ZHAO Jiong, et al. Bearing fault diagnosis based on improved stacked recurrent neural network[J]. Journal of Tongji University (Natural Science), 2019, 47(10): 1500-1507. (in Chinese)

    ZHOU Qicai, SHEN Hehong, ZHAO Jiong, et al. Bearing fault diagnosis based on improved stacked recurrent neural network[J]. Journal of Tongji University (Natural Science), 2019, 4710): 1500-1507. (in Chinese)

  • 期刊类型引用(1)

    1. 贾本有,黎东洲,杨帆,孙晓明,高瑾瑾,苏琨,毕峥峥,范子武. 大汶河流域2001—2022年暴雨洪水特征及其关系分析. 水利水运工程学报. 2025(01): 76-86 . 本站查看

    其他类型引用(1)

图(7)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-10-09
  • 网络出版日期:  2023-12-03
  • 刊出日期:  2024-01-31

目录

    /

    返回文章
    返回