Citation: | (SUN Xiaoqian, WANG Xingping, ZHAO Yang, et al. Study on two downscaling models for precipitation and temperature based on the CMIP6 climate model — a case study above Lanzhou on the Yellow River[J]. Hydro-Science and Engineering(in Chinese)). DOI: 10.12170/20240810001 |
The acquisition of high-resolution temperature and precipitation data is crucial for climate change and flood and drought risk assessments in watersheds. Using measured temperature and precipitation data from 16 meteorological stations above Lanzhou in the Yellow River Basin and NCEP reanalysis data, the optimal grid and atmospheric circulation factors were selected to establish the SDSM statistical downscaling model and the Random Forest (RF) downscaling model. Accuracy evaluations were conducted using station-measured data. Based on this, the preferred atmospheric circulation factors from the MRI-ESM2-0 climate model in CMIP6 were used to further verify the reliability of the two downscaling model results. The results show that: ① During the calibration period (1971–2004), the downscaling model was constructed based on the screened NCEP reanalysis data. The Random Forest model outperforms the SDSM model, with the R2 and Nash-Sutcliffe efficiency coefficient for daily temperature simulation reaching 0.97, and the R2and Nash-Sutcliffe efficiency coefficient for precipitation simulation exceeding 0.64 at the monthly scale. ② During the validation period (2005–2014), using the preferred atmospheric circulation factors of the MRI-ESM2-0 model, compared to the SDSM model, the proportion of absolute error (EA) in the Random Forest model's temperature downscaling where EA⩽ ℃ increased by 4.3%, while the proportion where {E}_{A}\geqslant 1.0 ℃ decreased by 9.1%. The proportion of monthly precipitation simulations where {E}_{A}\leqslant 2.0 mm increased by 6.7%, while the proportion where {E}_{A}\geqslant 10.0 mm decreased by 15.8%. The Random Forest model also performed better than the SDSM model in both wet and dry months. ③ Overall, both downscaling models are applicable above Lanzhou in the Yellow River Basin, with daily temperature simulation being more effective than precipitation simulation, and the Random Forest model demonstrating relatively higher simulation accuracy. The study results provide a reference for selecting statistical downscaling methods in the region and future climate change research.
[1] |
高启慧, 秦圆圆, 梁媚聪, 等. IPCC第六次评估报告综合报告解读及对我国的建议[J]. 环境保护,2023,51(增刊2):82-84. (GAO Qihui, QIN Yuanyuan, LIANG Meicong, et al. Interpretation of the main conclusions and suggestions of IPCC AR6 synthesis report[J]. Environmental Protection, 2023, 51(Suppl2): 82-84. (in Chinese)
GAO Qihui, QIN Yuanyuan, LIANG Meicong, et al. Interpretation of the main conclusions and suggestions of IPCC AR6 synthesis report[J]. Environmental Protection, 2023, 51(Suppl2): 82-84. (in Chinese)
|
[2] |
鞠琴, 高慧滨, 王国庆, 等. 基于能量平衡原理的潜在蒸散发模型构建[J]. 水科学进展,2022,33(5):794-804. (JU Qin, GAO Huibin, WANG Guoqing, et al. Modeling potential evapotranspiration based on energy balance[J]. Advances in Water Science, 2022, 33(5): 794-804. (in Chinese)
JU Qin, GAO Huibin, WANG Guoqing, et al. Modeling potential evapotranspiration based on energy balance[J]. Advances in Water Science, 2022, 33(5): 794-804. (in Chinese)
|
[3] |
QIAO C P, NING Z R, WANG Y, et al. Impact of climate change on water availability in water source areas of the South-to-North Water Diversion Project in China[J]. Frontiers in Earth Science, 2021, 9: 860.
|
[4] |
YAZDANDOOST F, MORADIAN S, IZADI A, et al. Evaluation of CMIP6 precipitation simulations across different climatic zones: uncertainty and model intercomparison[J]. Atmospheric Research, 2021, 250: 105369. doi: 10.1016/j.atmosres.2020.105369
|
[5] |
WILBY R L, DAWSON C W, BARROW E M. Sdsm: a decision support tool for the assessment of regional climate change impacts[J]. Environmental Modelling & Software, 2002, 17(2): 145-157.
|
[6] |
王晓燕, 杨涛, 郝振纯. 基于统计降尺度的黄河源区气象极值预测[J]. 水电能源科学,2011,29(4):1-4, 34. (WANG Xiaoyan, YANG Tao, HAO Zhenchun. Climate extreme forecasting in headwater catchment of Yellow River based on statistical downscaling method[J]. Water Resources and Power, 2011, 29(4): 1-4, 34. (in Chinese) doi: 10.3969/j.issn.1000-7709.2011.04.001
WANG Xiaoyan, YANG Tao, HAO Zhenchun. Climate extreme forecasting in headwater catchment of Yellow River based on statistical downscaling method[J]. Water Resources and Power, 2011, 29(4): 1-4, 34. (in Chinese) doi: 10.3969/j.issn.1000-7709.2011.04.001
|
[7] |
叶加俊, 卢健涛, 银星黎, 等. 基于SDSM-SWAT模型的汉江上游径流变化模拟[J]. 水电能源科学,2019,37(4):1-4, 12. (YE Jiajun, LU Jiantao, YIN Xingli, et al. Simulation of runoff change in the upper reaches of the Hanjiang River Based on SDSM-SWAT model[J]. Water Resources and Power, 2019, 37(4): 1-4, 12. (in Chinese)
YE Jiajun, LU Jiantao, YIN Xingli, et al. Simulation of runoff change in the upper reaches of the Hanjiang River Based on SDSM-SWAT model[J]. Water Resources and Power, 2019, 37(4): 1-4, 12. (in Chinese)
|
[8] |
MAHMOOD R, BABEL M S. Future changes in extreme temperature events using the statistical downscaling model (SDSM) in the trans-boundary region of the Jhelum River Basin[J]. Weather and Climate Extremes, 2014, 5/6: 56-66. doi: 10.1016/j.wace.2014.09.001
|
[9] |
DORJI S, HERATH S, MISHRA B K. Future climate of Colombo downscaled with SDSM-neural network[J]. Climate, 2017, 5(1): 24. doi: 10.3390/cli5010024
|
[10] |
赖成光, 陈晓宏, 赵仕威, 等. 基于随机森林的洪灾风险评价模型及其应用[J]. 水利学报,2015,46(1):58-66. (LAI Chengguang, CHEN Xiaohong, ZHAO Shiwei, et al. A flood risk assessment model based on Random Forest and its application[J]. Journal of Hydraulic Engineering, 2015, 46(1): 58-66. (in Chinese)
LAI Chengguang, CHEN Xiaohong, ZHAO Shiwei, et al. A flood risk assessment model based on Random Forest and its application[J]. Journal of Hydraulic Engineering, 2015, 46(1): 58-66. (in Chinese)
|
[11] |
鞠琴, 吴金雨, 王兴平, 等. 机器学习算法在降水和气温多模式集成中的应用[J]. 水资源保护,2024,40(3):106-115. (JU Qin, WU Jinyu, WANG Xingping, et al. Application of machine learning algorithms in multimodal integration of precipitation and temperature[J]. Water Resources Protection, 2024, 40(3): 106-115. (in Chinese) doi: 10.3880/j.issn.10046933.2024.03.013
JU Qin, WU Jinyu, WANG Xingping, et al. Application of machine learning algorithms in multimodal integration of precipitation and temperature[J]. Water Resources Protection, 2024, 40(3): 106-115. (in Chinese) doi: 10.3880/j.issn.10046933.2024.03.013
|
[12] |
李建明, 马燕飞, 李仁杰, 等. 基于随机森林的海河流域地表温度降尺度[J]. 遥感信息,2021,36(4):151-158. (LI Jianming, MA Yanfei, LI Renjie, et al. Land surface temperature downscaling of Haihe River Basin based on random forest[J]. Remote Sensing Information, 2021, 36(4): 151-158. (in Chinese) doi: 10.3969/j.issn.1000-3177.2021.04.020
LI Jianming, MA Yanfei, LI Renjie, et al. Land surface temperature downscaling of Haihe River Basin based on random forest[J]. Remote Sensing Information, 2021, 36(4): 151-158. (in Chinese) doi: 10.3969/j.issn.1000-3177.2021.04.020
|
[13] |
丁圆圆, 赵健赟, 姜传礼, 等. 利用随机森林和地理加权回归的黄河源GIMMS3gNDVI降尺度方法[J]. 遥感信息,2023,38(4):113-121. (DING Yuanyuan, ZHAO Jianyun, JIANG Chuanli, et al. GIMMS3gNDVI downscaling using random forest and geographically weighted regression in Yellow River source[J]. Remote Sensing Information, 2023, 38(4): 113-121. (in Chinese)
DING Yuanyuan, ZHAO Jianyun, JIANG Chuanli, et al. GIMMS3gNDVI downscaling using random forest and geographically weighted regression in Yellow River source[J]. Remote Sensing Information, 2023, 38(4): 113-121. (in Chinese)
|
[14] |
HASAN KARAMAN Ç, AKYÜREK Z. Evaluation of near-surface air temperature reanalysis datasets and downscaling with machine learning based Random Forest method for complex terrain of Turkey[J]. Advances in Space Research, 2023, 71(12): 5256-5281. doi: 10.1016/j.asr.2023.02.006
|
[15] |
AVAND M, MORADI H, LASBOYEE M R. Using machine learning models, remote sensing, and GIS to investigate the effects of changing climates and land uses on flood probability[J]. Journal of Hydrology, 2021, 595: 125663. doi: 10.1016/j.jhydrol.2020.125663
|
[16] |
梁康, 公丽, 宋小青, 等. 黄河水源涵养区土地利用变化的区域分异特征及未来格局[J]. 水科学进展,2024,35(2):325-337. (LIANG Kang, GONG Li, SONG Xiaoqing, et al. Regional differentiation and future patterns of land use changes in the water conservation zone of the Yellow River[J]. Advances in Water Science, 2024, 35(2): 325-337. (in Chinese)
LIANG Kang, GONG Li, SONG Xiaoqing, et al. Regional differentiation and future patterns of land use changes in the water conservation zone of the Yellow River[J]. Advances in Water Science, 2024, 35(2): 325-337. (in Chinese)
|
[17] |
王国庆, 张建云. 环境变化的径流效应研究进展及黄河水源涵养区研究展望[J]. 水资源保护,2024,40(2):1-8. (WANG Guoqing, ZHANG Jianyun. Research progress on runoff effects of environmental changes and prospects for research on the Yellow River water source conservation area[J]. Water Resources Protection, 2024, 40(2): 1-8. (in Chinese)
WANG Guoqing, ZHANG Jianyun. Research progress on runoff effects of environmental changes and prospects for research on the Yellow River water source conservation area[J]. Water Resources Protection, 2024, 40(2): 1-8. (in Chinese)
|
[18] |
鞠琴, 刘小妮, 刘娣, 等. 基于遥感和通量观测的实际蒸散发时空变化特征——以黄河流域水源涵养区为例[J]. 水科学进展,2024,35(2):338-347. (JU Qin, LIU Xiaoni, LIU Di, et al. Spatiotemporal variation characteristics of actual evapotranspiration based on remote sensing and flux observations: case study in the water conservation area of the Yellow River basin[J]. Advances in Water Science, 2024, 35(2): 338-347. (in Chinese)
JU Qin, LIU Xiaoni, LIU Di, et al. Spatiotemporal variation characteristics of actual evapotranspiration based on remote sensing and flux observations: case study in the water conservation area of the Yellow River basin[J]. Advances in Water Science, 2024, 35(2): 338-347. (in Chinese)
|
[19] |
杨洁, 谢保鹏, 张德罡. 基于InVEST模型的黄河流域产水量时空变化及其对降水和土地利用变化的响应[J]. 应用生态学报,2020,31(8):2731-2739. (YANG Jie, XIE Baopeng, ZHANG Degang. Spatio-temporal variation of water yield and its response to precipitation and land use change in the Yellow River Basin based on InVEST model[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2731-2739. (in Chinese)
YANG Jie, XIE Baopeng, ZHANG Degang. Spatio-temporal variation of water yield and its response to precipitation and land use change in the Yellow River Basin based on InVEST model[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2731-2739. (in Chinese)
|
[20] |
钱云平, 金双彦, 蒋秀华, 等. 黄河兰州以上河川基流量变化对黄河水资源的影响[J]. 水资源与水工程学报,2004,15(1):19-23. (QIAN Yunping, JIN Shuangyan, JIANG Xiuhua, et al. Influence of variation of base flow in the upper reaches of Lanzhou on water resources of Yellow River[J]. Journal of Water Resources and Water Engineering, 2004, 15(1): 19-23. (in Chinese) doi: 10.3969/j.issn.1672-643X.2004.01.004
QIAN Yunping, JIN Shuangyan, JIANG Xiuhua, et al. Influence of variation of base flow in the upper reaches of Lanzhou on water resources of Yellow River[J]. Journal of Water Resources and Water Engineering, 2004, 15(1): 19-23. (in Chinese) doi: 10.3969/j.issn.1672-643X.2004.01.004
|
[21] |
吴金雨, 鞠琴, 刘小妮, 等. CMIP6模式对黄河水源涵养区降水和气温模拟能力的评估[J]. 水利水运工程学报,2023(6):1-12. (WU Jinyu, JU Qin, LIU Xiaoni, et al. Assessment of precipitation and temperature in the water conservation region of the Yellow River Basin using CMIP6 models[J]. Hydro-Science and Engineering, 2023(6): 1-12. (in Chinese) doi: 10.12170/20230215001
WU Jinyu, JU Qin, LIU Xiaoni, et al. Assessment of precipitation and temperature in the water conservation region of the Yellow River Basin using CMIP6 models[J]. Hydro-Science and Engineering, 2023(6): 1-12. (in Chinese) doi: 10.12170/20230215001
|
[22] |
刘卫林, 熊翰林, 刘丽娜, 等. 基于CMIP5模式和SDSM的赣江流域未来气候变化情景预估[J]. 水土保持研究,2019,26(2):145-152. (LIU Weilin, XIONG Hanlin, LIU Lina, et al. Estimate of the climate change in Ganjiang River Basin using SDSM method and CMIP5[J]. Research of Soil and Water Conservation, 2019, 26(2): 145-152. (in Chinese)
LIU Weilin, XIONG Hanlin, LIU Lina, et al. Estimate of the climate change in Ganjiang River Basin using SDSM method and CMIP5[J]. Research of Soil and Water Conservation, 2019, 26(2): 145-152. (in Chinese)
|
[23] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
|
[24] |
任梅芳, 庞博, 徐宗学, 等. 基于随机森林模型的雅鲁藏布江流域气温降尺度研究[J]. 高原气象,2018,37(5):1241-1253. (REN Meifang, PANG Bo, XU Zongxue, et al. Downscaling of air temperature in the Yarlung Zangbo River Basin based on the random forest model[J]. Plateau Meteorology, 2018, 37(5): 1241-1253. (in Chinese)
REN Meifang, PANG Bo, XU Zongxue, et al. Downscaling of air temperature in the Yarlung Zangbo River Basin based on the random forest model[J]. Plateau Meteorology, 2018, 37(5): 1241-1253. (in Chinese)
|
[25] |
褚江东, 粟晓玲, 张特, 等. 基于随机森林模型的GRACE数据3种空间降尺度对比[J]. 湖泊科学,2024,36(3):951-962. (CHU Jiangdong, SU Xiaoling, ZHANG Te, et al. Comparison of three spatial downscaling concepts of GRACE data using random forest model[J]. Journal of Lake Sciences, 2024, 36(3): 951-962. (in Chinese) doi: 10.18307/2024.0346
CHU Jiangdong, SU Xiaoling, ZHANG Te, et al. Comparison of three spatial downscaling concepts of GRACE data using random forest model[J]. Journal of Lake Sciences, 2024, 36(3): 951-962. (in Chinese) doi: 10.18307/2024.0346
|
[26] |
吴志明, 李建超, 王睿, 等. 基于随机森林的内陆湖泊水体有色可溶性有机物(CDOM)浓度遥感估算[J]. 湖泊科学,2018,30(4):979-991. (WU Zhiming, LI Jianchao, WANG Rui, et al. Estimation of CDOM concentration in inland lake based on random forest using Sentinel-3A OLCI[J]. Journal of Lake Sciences, 2018, 30(4): 979-991. (in Chinese) doi: 10.18307/2018.0411
WU Zhiming, LI Jianchao, WANG Rui, et al. Estimation of CDOM concentration in inland lake based on random forest using Sentinel-3A OLCI[J]. Journal of Lake Sciences, 2018, 30(4): 979-991. (in Chinese) doi: 10.18307/2018.0411
|
[27] |
胡义明, 陈腾, 罗序义, 等. 基于机器学习模型的淮河流域中长期径流预报研究[J]. 地学前缘,2022,29(3):284-291. (HU Yiming, CHEN Teng, LUO Xuyi, et al. Medium to long term runoff forecast for the Huai River Basin based on machine learning algorithm[J]. Earth Science Frontiers, 2022, 29(3): 284-291. (in Chinese)
HU Yiming, CHEN Teng, LUO Xuyi, et al. Medium to long term runoff forecast for the Huai River Basin based on machine learning algorithm[J]. Earth Science Frontiers, 2022, 29(3): 284-291. (in Chinese)
|
[28] |
赵芳芳, 徐宗学. 黄河源区未来地面气温变化的统计降尺度分析[J]. 高原气象,2008,27(1):153-161. (ZHAO Fangfang, XU Zongxue. Statistical downscaling of future temperature change in source of the Yellow River Basin[J]. Plateau Meteorology, 2008, 27(1): 153-161. (in Chinese)
ZHAO Fangfang, XU Zongxue. Statistical downscaling of future temperature change in source of the Yellow River Basin[J]. Plateau Meteorology, 2008, 27(1): 153-161. (in Chinese)
|
[29] |
张子涵, 王学佳, 杨梅学, 等. 黄河上游水源涵养区近60年关键气候要素的时空变化[J]. 高原气象,2023,42(6):1372-1385. (ZHANG Zihan, WANG Xuejia, YANG Meixue, et al. Spatio-temporal changes of key climatic elements in the upper Yellow River water conservation area in recent 60 years[J]. Plateau Meteorology, 2023, 42(6): 1372-1385. (in Chinese)
ZHANG Zihan, WANG Xuejia, YANG Meixue, et al. Spatio-temporal changes of key climatic elements in the upper Yellow River water conservation area in recent 60 years[J]. Plateau Meteorology, 2023, 42(6): 1372-1385. (in Chinese)
|
[30] |
段朋辉. 基于遥感的黄河上游降水时空特征及植被响应分析[D]. 郑州: 河南大学, 2017. (DUAN Penghui. The temporal and spatial characteristic analysis of the upstream of the Yellow River and the response of vegetation[D]. Zhengzhou: Henan University, 2017. (in Chinese)
DUAN Penghui. The temporal and spatial characteristic analysis of the upstream of the Yellow River and the response of vegetation[D]. Zhengzhou: Henan University, 2017. (in Chinese)
|
[31] |
贺山峰, 陈超冰, 李铮, 等. 黄河中上游极端降水特征及其对区域气候变化的敏感性[J]. 资源科学,2024,46(3):524-537. (HE Shanfeng, CHEN Chaobing, LI Zheng, et al. Characteristics of extreme precipitation and its sensitivity to regional climate change in the upper and middle reaches of the Yellow River Basin[J]. Resources Science, 2024, 46(3): 524-537. (in Chinese) doi: 10.18402/resci.2024.03.07
HE Shanfeng, CHEN Chaobing, LI Zheng, et al. Characteristics of extreme precipitation and its sensitivity to regional climate change in the upper and middle reaches of the Yellow River Basin[J]. Resources Science, 2024, 46(3): 524-537. (in Chinese) doi: 10.18402/resci.2024.03.07
|
[32] |
林慧. 基于CMIP6模式的淮河中上游流域气象干旱特征及演变趋势研究[D]. 扬州: 扬州大学, 2021. (LIN Hui. Variations of meteorological drought characteristics and drought tendency in the upper and middle reaches of Huai River basin based on CMIP6[D]. Yangzhou: Yangzhou University, 2021. (in Chinese)
LIN Hui. Variations of meteorological drought characteristics and drought tendency in the upper and middle reaches of Huai River basin based on CMIP6[D]. Yangzhou: Yangzhou University, 2021. (in Chinese)
|
[33] |
赵芳芳, 徐宗学. 统计降尺度方法和Delta方法建立黄河源区气候情景的比较分析[J]. 气象学报,2007,65(4):653-62. (ZHAO Fangfang, XU Zongxue. Comparative analysis on downscaled climate scenarios for headwater catchment of Yellow River using SDS and Delta methods[J]. Acta Meteorologica Sinica, 2007, 65(4): 653-62. (in Chinese) doi: 10.3321/j.issn:0577-6619.2007.04.017
ZHAO Fangfang, XU Zongxue. Comparative analysis on downscaled climate scenarios for headwater catchment of Yellow River using SDS and Delta methods[J]. Acta Meteorologica Sinica, 2007, 65(4): 653-62. (in Chinese) doi: 10.3321/j.issn:0577-6619.2007.04.017
|